In this group of recruits,
we selleck chemical found considerable dietary deficiency. First, despite the high selleck inhibitor energy needs during this period of training, the recruits consumed only 70% of the energy recommendations of the NSOR, with the NSF group reporting an 8.4% decrease in their BT total energy intake compared with the pre-induction total energy intake. This low intake may be explained by the presence of fundamental stressors in the military environment, such as periodic food restrictions, sleep deprivation, mental burden, and constant physical evaluations. These findings are in accordance with previous studies pointing to the fact that military personnel normally consume insufficient energy, whether or not they are provided with an adequate amount of food [33]. In this study, the deficient energy intake was not associated with a weight loss
but rather an increase of body weight during BT by 1.5%. This is also in line with previous studies, specifically that in this training program the gained weight was in lean body mass and not in fat [34]. We are concerned that our participants did not meet MDRI requirements. These deficiencies were observed for nearly every nutrient evaluated in the FFQ. The highest deficiencies were for vitamin D and calcium in the SF group, both around 60% of the MDRI before induction and click here also during BT. Of note, among the NSF group, vitamin D intake was the second most deficient variable, reported to be consumed at a level of 78.7% from MDRI before induction and at even a lower level of 59.6% during BT. In our
study, the SF recruits reported 41.0% less initial calcium and vitamin D intakes on induction day than the MDRI recommendations. Although vitamin D3 (cholecalciferol) is either formed in the skin after exposure to sunlight or obtained from nutritional sources, especially fatty fish [32], most IDF soldiers use Smoothened sunscreen and wear long-sleeved clothing during military training. This may limit vitamin D3 synthesis, and therefore, the importance of balanced nutritional intake, especially of vitamin D and calcium, should be emphasized, even though we did not actually find low serum levels of vitamin D. Release of PTH is controlled by the level of calcium in the blood, with low blood calcium levels causing an increase in PTH. The main purpose of this hormone is calcium homeostasis. It is therefore not surprising that in these healthy young recruits, we did not find any pathological PTH or calcium values. A slight trend towards higher levels of PTH in the 4-month BT may represent a lack of dietary calcium. However PTH differences between SF and NSF or between induction values and 4 or 6 month values were not significant.