Cancer Cell 2007,11(1):37–51.PubMedCrossRef 38. Diehn MCR, Lobo NA, check details Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M,
Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009,458(7239):780–783.PubMedCrossRef 39. Brabec V, Nováková O: DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resistance Updates 2006,9(3):111–122.PubMedCrossRef 40. Yu H, Zhou Y, Lind SE, Ding WQ: Clioquinol targets zinc to lysosomes in human cancer cells. Biochem J 2009,417(1):133–139.PubMedCrossRef 41. Efferth T: Mechanistic perspectives for 1,2,4-trioxanes in anti-cancer therapy. Drug Resistance Updates 2005,8(1–2):85–97.PubMedCrossRef 42. Moore JCLH, Li JR, Ren RL, McDougall JA, Singh NP, Chou CK: Oral administration of dihydroartemisinin and ferrous sulfate retarded implanted fibrosarcoma growth in the rat. Cancer www.selleckchem.com/products/bay80-6946.html Lett 1995,98(1):83–87.PubMed 43. Brown JM, Giaccia AJ: The Unique Physiology of Solid Tumors: Opportunities (and Problems) for Cancer Therapy. Cancer Research 1998,58(7):1408–1416.PubMed 44. Höckel MVP: Biological consequences of tumor hypoxia. Semin Oncol 2001,28(2 Suppl 8):36–41.PubMedCrossRef 45. Harris AL: Hypoxia [mdash] a key regulatory L-NAME HCl factor
in tumour growth. Nat Rev Cancer 2002,2(1):38–47.PubMedCrossRef 46. Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003,3(10):721–732.PubMedCrossRef 47. Sowter HMRR, Moore JW, Ratcliffe PJ, Harris AL: Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res 2003,63(19):6130–6134.PubMed 48. Eckard JDJ, Wu J, Jian J, Yang Q, Chen H, Costa M, Frenkel K, Huang X: Effects of cellular iron deficiency on the https://www.selleckchem.com/products/sgc-cbp30.html formation
of vascular endothelial growth factor and angiogenesis. Iron deficiency and angiogenesis. Cancer Cell Int 2010.,10(28): Competing interests The authors declare that they have no competing interests. Authors’ contributions ZL developed the screening techniques, designed and performed most of the experiments and drafted the manuscript. HT performed and analysed part of the screening validation experiments. FG engaged in data acquisition of primary screening. JG developed the strategy to screen for iron regulatory compounds and was involved in data analysis and manuscript revision. All authors read and approved the final manuscript.”
“Background Lung cancer is the leading cause of cancer-related death in the world, and non-small cell lung cancer accounts for approximately 80% of all cases[1, 2]. Despite advances in diagnostic and therapeutic, the overall 5-year survival rate in many countries is generally less than 15%[3].