In this study, we tested whether functional differences between c

In this study, we tested whether functional differences between chronic obstructive pulmonary disease (COPD) and non-COPD fibroblasts could be reduced utilizing this approach. Primary fibroblasts from non-COPD and COPD patients were reprogrammed to iPSCs. Reprogrammed iPSCs were positive for oct3/4, nanog, and sox2, formed embryoid bodies in vitro, and induced teratomas in nonobese

diabetic/severe combined immunodeficient mice. Reprogrammed iPSCs were then differentiated into fibroblasts (non-COPD-i and COPD-i) and were assessed either functionally by chemotaxis and gel contraction or for gene expression by microarrays and compared with their corresponding primary fibroblasts. Primary COPD fibroblasts contracted three-dimensional collagen gels and migrated toward fibronectin less robustly than non-COPD fibroblasts. In contrast, redifferentiated selleck fibroblasts from iPSCs derived from the non-COPD and COPD fibroblasts were similar in response in both functional assays. Microarray analysis identified 1,881 genes that were

differentially expressed between primary COPD and non-COPD fibroblasts, with 605 genes differing by more than twofold. After redifferentiation, 112 genes were differentially expressed between COPD-i and non-COPD-i with only three genes by more than twofold. Similar findings were observed with microRNA (miRNA) expression: 56 miRNAs were differentially expressed between non-COPD and COPD primary cells; after redifferentiation, only 3 miRNAs were differentially expressed between non-COPD-i and COPD-i fibroblasts. Interestingly, of the 605 genes that were differentially expressed between COPD and non-COPD check details fibroblasts, 293 genes were changed toward control after redifferentiation. In conclusion, functional and epigenetic alterations of COPD fibroblasts can be reprogrammed through formation of iPSCs.”
“Ischemia DMXAA Reperfusion injury is the tissue damage caused when blood supply returns to the tissue

after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on BCL-2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated. In this experimental study, 20 male wistar rats with average weight of 250-300 g were selected and then were accidently divided them on two tenth group of control and treatment groups. In the control group, celiotomy was performed by ventral midline incision. The left kidney was isolated, and then both the renal artery and vein were obstructed. After 60 minutes of warm ischemia, vessel obstruction resolved and the right kidney was removed. 72 hours after reperfusion, tissue samples were taken from left kidney for Tunel assay. We used quantitative real time PCR for detection of BCL-2 gene expression in treated groups and then compared them to control samples. In the treatment group, the cell death changes, showed lower level than the control group.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>