[http://​dx ​doi ​org/​10 ​1111/​j ​1365–2958 ​2005 ​04516 ​x]Pub

[http://​dx.​doi.​org/​10.​1111/​j.​1365–2958.​2005.​04516.​x]PubMedCrossRef 42. Storch KF, Rudolph J, Oesterhelt D: Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum. EMBO J 1999,18(5):1146–1158. [http://​dx.​doi.​org/​10.​1093/​emboj/​18.​5.​1146]PubMedCrossRef 43. Hou S, Larsen RW, Boudko D, Riley CW, Karatan E, Zimmer M, Ordal GW, Alam M: Myoglobin-like aerotaxis

transducers in Archaea and PD173074 solubility dmso Bacteria. Nature 2000,403(6769):540–544. [http://​dx.​doi.​org/​10.​1038/​35000570]PubMedCrossRef 44. Nutsch T, Marwan W, Oesterhelt D, Gilles ED: Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum. Genome Res 2003,13(11):2406–2412. [http://​dx.​doi.​org/​10.​1101/​gr.​1241903]PubMedCrossRef 45. Nutsch T, Oesterhelt D, Gilles ED, Marwan W: A quantitative Talazoparib model of the switch cycle of an archaeal flagellar motor and its sensory control. Biophys J 2005,89(4):2307–2323. [http://​dx.​doi.​org/​10.​1529/​biophysj.​104.​057570]PubMedCrossRef 46. del Rosario R C H, Staudinger WF, Streif S, Pfeiffer F, Mendoza E, Oesterhelt D: Modelling the CheY(D10K,Yl00W) Halobacterium salinarum mutant: sensitivity analysis allows choice of parameter to be modified in the phototaxis model. IET Syst Biol 2007,1(4):207–221. [http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​17708428]PubMedCrossRef 47. Streif S, Oesterhelt D, Marwan

W: A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis. BMC Syst Biol 2010, 4:27. [http://​dx.​doi.​org/​10.​1186/​1752–0509–4-27]PubMedCrossRef 48. Rao CV, Glekas GD, Ordal GW: The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol 2008,16(10):480–487. [http://​dx.​doi.​org/​10.​1016/​j.​tim.​2008.​07.​003]PubMedCrossRef 49. Marwan W, Schäfer W,

Oesterhelt D: Signal transduction in Halobacterium depends on fumarate. EMBO J 1990,9(2):355–362. [http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​2303030]PubMed 50. Bcl-w Montrone M, Marwan W, Grünberg H, Musseleck S, Starostzik C, Oesterhelt D: Sensory rhodopsin-controlled release of the switch factor fumarate in Halobacterium salinarium. Mol Microbiol 1993,10(5):1077–1085. [http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​7934858]PubMedCrossRef 51. Christian JH, Waltho JA: Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta 1962, 65:506–508.PubMedCrossRef 52. Lanyi JK: Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 1974,38(3):272–290. [http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​4607500]PubMed 53. Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K: Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 2003,327(2):347–357. [http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​12628242]PubMedCrossRef 54.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>