Jörg Aßmus has performed the statistical analyses Anne Ma Dyrhol

Jörg Aßmus has performed the statistical analyses. Anne Ma Dyrhol-Riise has designed the study, participated in interpretation of data and preparation of the manuscript. “
“An important function of the immune system consists in eliminating infected or transformed

Small molecule library datasheet cells. Naive CD8+ T lymphocytes differentiate in peripheral lymphoid organs following a first antigen contact. There they acquire the different constituents of the cytolytic machinery and become cytolytic T lymphocytes (CTLs), before migration to the tissues where they meet their specific target. Target cell killing is mediated by the release of granules expressing the Lamp-1 marker 1 and containing effector proteins including perforin 2, 3 and granzymes (granzyme A (GZMA) and B (GZMB) being the main proteases). Effective target cell lysis depends on many factors; so deciphering the mechanisms involved is important, in particular to palliate the failings of the immune system during tumor development. Transient labeling of acidic granules with Lysotracker has elegantly been used to analyze kinetics of granule polarization Y 27632 in CTL/target conjugates. Intracellular staining of fixed and permeabilized cells has allowed elucidation of important steps of CTL granule movements, fusion and degranulation 4–6. In order to develop a

fluorescent probe that would stably label the contents of cytolytic granules in living cells, we designed a construct encoding a fusion protein composed of an N-terminal GZMB, a 12 amino-acid linker and a C-terminal tdTomato (tdTom) (excitation: 554 nM, emission: 581 nm, stable at oxyclozanide the acidic pH of the granules (pKa 4.7) 7, GZMB-tdTom). This was inserted in the retroviral expression vector MSCV-IRES-HuCD2t (Supporting Information Fig.

1). We first transduced a T-cell hybridoma (HybT) and obtained stable expression of GZMB-tdTom in granules co-expressing GZMB and Lamp-1 (Supporting Information Fig. 2–5). Immunoblots revealed the fusion protein GZMB-tdTom at 85 kDa and tdTom at 55 kDa MW, as expected (Supporting Information Fig. 4). GZMB enzymatic activity could be detected in GZMB-tdTom-HybT cells, albeit at a low level as compared with that in CTLs (Supporting Information Fig. 5D). Whether this results from incomplete processing of the protein in HybT cells requires further investigation (Supporting Information Fig. 5D). To address more physiological conditions, we transduced normal CD8+ CTLs with the GZMB-tdTom construct (Supporting Information Fig. 6). As observed by confocal microscopy, the GZMB-tdTom fusion protein was localized in granules (Fig. 1A). Co-localization between GZMB-tdTom, Lamp-1 and GZMB was observed in granules of CTLs alone (Fig. 1B-i) in CTL/antigenic target conjugates (Fig. 1B-ii) that had re-localized the red granules to the cell–cell contact zone, and in conjugates of CTLs with targets presenting control peptide (Fig. 1B-iii).

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>