(C) 2008 Elsevier Inc All rights reserved “
“The high-resol

(C) 2008 Elsevier Inc. All rights reserved.”
“The high-resolution structural data for simian virus 40 large-T-antigen helicase revealed a set of nine residues bound to ATP/ADP directly or indirectly. The functional role of each of these residues in ATP hydrolysis and also the helicase function of this AAA+ (ATPases associated with various cellular activities) molecular motor are unclear. Here, we report our mutational analysis of each of these residues to examine their functionality in oligomerization, DNA binding, ATP hydrolysis, and double-stranded DNA (dsDNA) unwinding.

All mutants were capable of oligomerization in the presence of ATP and could bind single-stranded DNA and dsDNA. ATP hydrolysis was substantially

click here reduced for proteins with mutations of residues making direct contact with the gamma-phosphate of ATP or the apical water molecule. A potentially noncanonical “”arginine finger”" residue, K418, is critical for ATP hydrolysis and helicase function, suggesting a new type of arginine finger role by a lysine in the stabilization of the transition state during ATP hydrolysis. Interestingly, our mutational data suggest that the positive- and negative-charge interactions in the uniquely observed residue pairs, R498/D499 and R540/D502, in large-T-antigen helicase are critically involved in the transfer of energy of ATP binding/hydrolysis to DNA unwinding.”
“Developmental neurotoxicity testing involves functional and neurohistological assessments in offspring selleck products during and following maternal and/or neonatal exposure. Data from positive control studies are an integral component in developmental neurotoxicity risk assessments.

Positive control data are crucial for evaluating a laboratory’s capability to detect chemical-induced changes in measured endpoints. Positive control data are also valuable in a weight-of-evidence approach to help determine the biological significance of results and provide confidence in negative results from developmental neurotoxicity (DNT) studies. This review is a practical guide for the selection and Dichloromethane dehalogenase use of positive control agents in developmental neurotoxicology. The advantages and disadvantages of various positive control agents are discussed for the endpoints in developmental neurotoxicity studies. Design issues specific to positive control studies in developmental neurotoxicity are considered and recommendations on how to interpret and report positive control data are made. Positive control studies should be conducted as an integral component of the incorporation and use of developmental neurotoxicity testing methods in laboratories that generate data used in risk decisions. Published by Elsevier Inc.

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>